Solving an exponential Diophantine equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exponential Diophantine Equation

Let a, b, c be fixed positive integers satisfying a2 + ab + b2 = c with gcd(a, b) = 1. We show that the Diophantine equation a2x+axby+b2y = cz has only the positive integer solution (x, y, z) = (1, 1, 1) under some conditions. The proof is based on elementary methods and Cohn’s ones concerning the Diophantine equation x2 + C = yn. Mathematics Subject Classification: 11D61

متن کامل

An exponential spline for solving the fractional riccati differential equation

In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...

متن کامل

The Exponential Diophantine Equation 2x + by = cz

Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + ...

متن کامل

On the Exponential Diophantine Equation ( 4 m 2 + 1

Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61

متن کامل

On Cornacchia’s algorithm for solving the diophantine equation

We give a new proof of the validity of Cornacchia’s algorithm for finding the primitive solutions (u, v) of the diophantine equation u + dv = m, where d and m are two coprime integers. This proof relies on diophantine approximation and an algorithmic solution of Thue’s problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2010

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa144-4-1